An Optimization Approach to Locally-Biased Graph Algorithms

نویسندگان

  • Kimon Fountoulakis
  • David F. Gleich
  • Michael W. Mahoney
چکیده

Locally-biased graph algorithms are algorithms that attempt to find local or small-scale structure in a typically large data graph. In some cases, this can be accomplished by adding some sort of locality constraint and calling a traditional graph algorithm; but more interesting are locally-biased graph algorithms that compute answers by running a procedure that does not even look at most of the graph. This corresponds more closely with what practitioners from various data science domains do, but it does not correspond well with the way that algorithmic and statistical theory is typically formulated. Recent work from several research communities has focused on developing locally-biased graph algorithms that come with strong complementary algorithmic and statistical theory and that are useful in practice in downstream data science applications. We provide a review and overview of this work, highlighting commonalities between seeminglydifferent approaches, and highlighting promising directions for future work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving a nurse rostering problem considering nurses preferences by graph theory approach

Nurse Rostering Problem (NRP) or the Nurse Scheduling Problem (NSP) is a complex scheduling problem that affects hospital personnel on a daily basis all over the world and is known to be NP-hard.The problem is to decide which members of a team of nurses should be on duty at any time, during a rostering period of, typically, one month.It is very important to efficiently utilize time and effort, ...

متن کامل

Open pit limit optimization using dijkstra’s algorithm

In open-pit mine planning, the design of the most profitable ultimate pit limit is a prerequisite to developing a feasible mining sequence. Currently, the design of an ultimate pit is achieved through a computer program in most mining companies. The extraction of minerals in open mining methods needs a lot of capital investment, which may take several decades. Before the extraction, the p...

متن کامل

Tabu-KM: A Hybrid Clustering Algorithm Based on Tabu Search Approach

  The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the ...

متن کامل

Semi-supervised eigenvectors for large-scale locally-biased learning

In many applications, one has side information, e.g., labels that are provided in a semisupervised manner, about a specific target region of a large data set, and one wants to perform machine learning and data analysis tasks “nearby” that prespecified target region. For example, one might be interested in the clustering structure of a data graph near a prespecified “seed set” of nodes, or one m...

متن کامل

Stock Portfolio Optimization Using Water Cycle Algorithm (Comparative Approach)

Portfolio selection process is a subject focused by many researchers. Various criteria involved in this process have undergone alterations over time, necessitating the use of appropriate investment decision support tools. An optimization approach used in different sciences is using meta-heuristic algorithms. In the present study, using Water Cycle Algorithm (WCA), a model was introduced for sel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the IEEE

دوره 105  شماره 

صفحات  -

تاریخ انتشار 2017